高强度光源,如自由电子激光器(FEL),是分子水平前沿研究的关键。通过超短脉冲,它们提供了必要的时间和亚原子空间分辨率。为了在自由电子激光器中产生光,多个电气和光学元件需要与该设施的射频标准主时钟同步。挑战在于,这些组件分发在千米长的距离上,应用需要在几飞秒范围内的同步精度。

对于此类任务,利用Cycle的PULSE等光时间分发系统(TDS)在光域中分发时间信号,从而提供长距离的稳定传输。首先,使用平衡光学微波相位检测器(BOMPD)将该设施的射频信号印在低噪声锁模激光器(光学主振荡器)上。随后,激光信号被耦合到时间稳定的保偏(PM)光纤链路,该光纤链路将信号分发到各个客户端。光纤网络包括具有光延迟线和平衡光互相关器(BOC)的反馈系统,以补偿信号传输时的波动。最后,在TDS的远程站,压控振荡器连接到另一个BOMPD以产生低噪声微波信号。

例如,这种方法用于中国大连相干光源(DCLS),该光源实现了20fs RMS及以下的时间抖动,以同步其RF时间信号。此外,在这种现代自由电子激光上实现Cycle的BOMPD来转换RF和光学时间信号,可以实现高精度实验和对分子动力学的新见解。

自由电子激光器

Used by

自由电子激光器           自由电子激光器                   自由电子激光器

Headline

1. K. Şafak, S. Droste, H. P. H. Cheng, A. Dai, K. Gumerlock, A. Berlin, S. Bhat, M. Neuhaus, J. Paradowski, F. Okrent, P. Schiepel, A. R. Fry, and F. X. Kärtner, “A Pulsed-Optical Timing Distribution System for LCLS-II,” Technical Digest of CLEO2020, paper SM2N.5 (2020).

2. K. Şafak, H. P. H. Cheng, A. Dai, M. Kaiser, V. Arsov, A. Berlin, E. Cano, W. Nasimzada, M. Neuhaus, P. Schiepel, S. Hunziker and F. X. Kärtner, “Single-Mode Fiber Based Pulsed-Optical Timing Link with Few-Femtosecond Precision in SwissFEL, ” Technical Digest of CLEO 2019, paper JTh2A.100 (2019).

3. H. P. H. Cheng, K. Şafak, A. Dai, A. Berlin, E. Cano, J. Derksen, D . Forouher, W. Nasimzada, M. Neuhaus, P. Schiepel, E. Seibel, F. X. Kärtner, Z. C. Chen, H. L. Ding, Z. G. He, Y. H. Tian, G. R. Wu, X. Q. Liu, B. Liu, “Commissioning and long-term results of a fully-automated pulse-based optical timing distribution system at Dalian Coherent Light Source,” Proceedings of 9th International Particle Accelerator Conference, WEPAF043, pp. 1909-1911 (2018).

4. H. P. H. Cheng, K. Şafak, A. Dai, J. Derksen, A. Berlin, E. Cano, Z. C. Chen, H. L. Ding, D. Forouher, Z. G. He, X. Q. Liu, W. Nasimzada, M. Neuhaus, P. Schiepel, E. Seibel, Y. H. Tian, B. Liu, G. Wu, and F. X. Kärtner, “Commissioning of a fully-automated pulse-based optical timing distribution system at Dalian Coherent Light Source,” Technical Digest of CLEO 2018, paper JW2A.128 (2018).

5. K. Şafak, H. P. H. Cheng, J. Derksen, D. N. Schimpf, A. Berg, A. Berlin, E. Cano, A. Dai, D. Forouher, A. Kalaydzhyan, J. Meier, W. Nasimzada, M. Neuhaus, P. Schiepel, E. Seibel, T. Tilp and F. X. Kärtner, “Large-scale turnkey timing distribution system for new generation photon science facilities,” Proceedings of 38th International FEL Conference, WEP030, pp. 485-487 (2017).

6. M. Xin, K. Şafak, and F. X. Kärtner, “Ultra-precise timing and synchronization for large-scale scientific instruments,” Optica 5 (12), 1564-1578 (2018).

7. K. Şafak, M. Xin, M. Y. Peng and F. X. Kärtner, “Synchronous multi-color laser network with daily sub-femtosecond timing drift,” Sci. Rep. 8 (1), 11948 (2018).

8. M. Xin, K. Şafak, M. Y. Peng, A. Kalaydzhyan, W. Wang, O. D. Mücke and F. X. Kärtner, “Attosecond precision multi-kilometer laser-microwave network,” Light Sci. Appl. 6 (1), e16187 (2017).

9. K. Şafak, H. P. H. Cheng, J. Derksen, D. N. Schimpf, A. Berg, A. Berlin, E. Cano, A. Dai, D. Forouher, A. Kalaydzhyan, J. Meier, W. Nasimzada, M. Neuhaus, P. Schiepel, E. Seibel, T. Tilp and F. X. Kärtner, “Large-scale turnkey timing distribution system for attosecond photon science facilities,” Technical Digest of CLEO 2017, paper JTu4L.3 (2017).